Given: $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. It is clear that for any integer k, when n is sufficiently large, Sn will exceed k.
Given an integer k (1≤k≤15), compute the smallest integer n such that Sn>k.
An integer k.
An integer n.
1
2