#T320. 2011
2011
Description
Given a positive integer n with a maximum length of 200 digits, find the last four digits of 2011^n^.
Input Format
The first line contains a positive integer k, representing the number of test cases (k ≤ 200). Each of the next k lines contains a positive integer n, where the number of digits in n does not exceed 200.
Output Format
For each n, output the result as an integer on a separate line. If the result has fewer than 4 digits, remove any leading zeros.
## Example
### Input:
2
1
2
### Output:
2011
4121
### Explanation:
- For n=1, 2011^1 = 2011, so the last four digits are 2011.
- For n=2, 2011^2 = 4044121, so the last four digits are 4121.
3
5
28
792
1051
81
5521