#Q204. 「一本通 6.2 练习 5」樱花

「一本通 6.2 练习 5」樱花

Description

Original Problem: HackerRank Equations

Find the number of positive integer solutions (x,y)(x, y) to the indeterminate equation:

1x+1y=1n!\frac{1}{x}+\frac{1}{y}=\frac{1}{n!}

Input Format

An integer nn.

Output Format

An integer representing the number of valid pairs (x,y)(x, y). The answer should be modulo 109+710^9+7.

Sample 1

There are three valid pairs (x,y)(x, y) that satisfy the equation: (3,6),(4,4)(3,6),(4,4), and (6,3)(6,3).

2

3

Constraints and Hints

For 30%30\% of the data, n100n\le 100;
For all data, 1n1061\le n\le 10^6.